Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Nutr ; 1(1): 63-73, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24804015

RESUMO

Giant red sea cucumbers, Parastichopus californicus, are commercially harvested in the U.S. Pacific Northwest; however, the nutritional and chemical properties of its edible muscle bands and body wall have not been fully elucidated. In particular are the fatty acid profiles of P. californicus tissues, which have not been documented. Sea cucumbers were delivered live and muscle bands and body wall freeze dried, vacuum packed, and stored at -30°C until analyzed. Proximate composition of freeze-dried tissues varied greatly with muscle bands being composed of 68% protein, 12% ash, 9% carbohydrate, and 5% lipids, while the body wall was composed of 47% protein, 26% ash, 15% carbohydrate, and 8% lipids. The hydroxyproline, proline, and glycine contents of the body wall were much higher than those in muscle bands, consistent with the larger amount of connective tissue. Calcium, magnesium, sodium, and iron contents were higher in the body wall than those in muscle bands, whereas the opposite was observed for zinc content. Total long-chain n-3 fatty acid contents were 19% and 32% of total fatty acids in body wall and muscle bands, respectively. Muscle bands had higher content of eicosapentaenoic acid (20:5n-3) than body wall at 22.6% and 12.3%, respectively. High content of arachidonic acid (20:4n-6) was recorded in both body wall (7.1%) and muscle bands (9.9%). Overall, the fatty acid profiles of body wall and muscle bands of P. californicus resemble those described for other species; however, the distribution and occurrence of certain fatty acids is unique to P. californicus, being representative of the fatty acid composition of temperate-polar marine organisms. The chemical characterization of freeze-dried edible tissues from P. californicus demonstrated that these products have valuable nutritional properties. The body wall, a food product of lower market value than muscle bands, could be better utilized for nutraceutical and pharmaceutical applications.

2.
Food Sci Nutr ; 1(1): 102-15, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24804019

RESUMO

The objective of this study was to determine important chemical characteristics of a full-strength liquid smoke, Code 10-Poly, and three refined liquid smoke products (AM-3, AM-10 and 1291) commercially available (Kerry Ingredients and Flavors, Monterey, TN). The pH of the products were significantly different (P < 0.05) and ranged from 2.3 (Code 10-Poly) to 5.7 (1291). The pH was inversely correlated with titratable acidity (R (2) = 0.87), which was significantly different (P < 0.05) among products ranging from 10.3% acetic acid (Code 10-Poly) to 0.7% acetic acid (1291). Total phenol content was quantified using the Gibbs reaction; the only liquid smoke containing appreciable level of phenolic compounds was Code 10-Poly at 3.22 mg mL(-1). Gas chromatography-mass spectrometry (GC-MS) analysis of liquid smoke dichloromethane extracts revealed that carbonyl-containing compounds were major constituents of all products, in which 1-hydroxy-2-butanone, 2(5H)-furanone, propanal and cyclopentenone predominated. Organic acids were detected by GC-MS in all extracts and correlated positively (R (2) = 0.98) with titratable acidity. The GC-MS data showed that phenolic compounds constituted a major portion of Code 10-Poly, and were detected only in trace quantities in 1291. The refined liquid smokes had lighter color, lower acidity, and reduced level of carbonyl-containing compounds and organic acids. Our study revealed major differences in pH, titratable acidity, total phenol content, color and chemical make-up of the full-strength and refined liquid smokes. The three refined liquid smoke products studied have less flavor and color active compounds, when compared with the full-strength product. Furthermore, the three refined products studied have unique chemical characteristics and will impart specific sensorial properties to food systems. Understanding the chemical composition of liquid smokes, be these refined or full-strength products, is an important step to establish their functions and appropriate use in food systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...